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Using the various functional relations for correlation functions in planar Ising
models, new results are obtained for the correlation functions and the q-depen-
dent susceptibility for Ising models on a quadratic lattice with quasiperiodic
coupling constants. The effects are clearest if the interactions are both attractive
and repulsive according to a quasiperiodic pattern. In particular, an exact scaling
limit result for the two-point correlation function of the Z-invariant inhomoge-
neous Ising model is presented and the q-dependent susceptibility is calculated for
some cases where the coupling constants vary according to Fibonacci rules. It is
found that the ferromagnetic case differs drastically from the case with both
ferro- and antiferromagnetic bonds. In the mixed case, the peaks of the q-depen-
dent susceptibility are everywhere dense for temperature T both above or below
the critical temperature Tc , but due to overlap only a finite number of peaks is
visible. This number of visible peaks decreases as T moves away from Tc . In the
ferromagnetic case, there is typically only one single peak at q=0, in spite of the
aperiodicity present in the lattice. These results provide evidence that in real
systems, even if the atoms arrange themselves aperiodically, there will be no
dramatic difference in the diffraction pattern, unless the pair correlation function
has clear aperiodic oscillations. The number of oscillations per correlation
length determines the number of visible peaks.

KEY WORDS: Ising model; Z-invariance; quasiperiodicity; Fibonacci;
correlation functions; wavevector dependent susceptibility; scaling limit.

1. FOREWORD AND DEDICATION

As this paper is an expanded version of a talk presented at a conference to
honor Dr. Rodney Baxter's sixtieth birthday, it seems proper to us to go
back many years and to recall how the present research was started and
how much we owe Dr. Baxter.
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While Baxter was visiting Stony Brook in 1980 one question came up
a few times about the book(1) he was writing, namely why so little is said
about correlation functions in his book. He replied with a challenge: Since
you know so much about the correlation functions of the Ising model, (2�11)

how does my result on p. 343 of ref. 12 fit in? Somehow, with very little input,
Baxter was able to write down a formula for the two-point correlation func-
tion of the most general inhomogeneous Ising model solvable by commuting
transfer matrices, which he named the Z-invariant Ising model.(12, 13)

Baxter's result for the two-point function, with 2m rapidity variables :j

passing between the two spins, is

g2m(k; :1 ,..., :2m)

=
1

m! H1(0) _&
k1�23 3(0)

2? &
m

``
1� j<l�2m

3(i:j&i:l)

_|
K

&K
ds1 } } } |

K

&K
dsm

``
1� j<l�m

[H2(sj&sl) 3 2(sj&sl)]

>2m
r=1 >m

j=1 [H(sj&i:r) 3(sj&i:r)]

_9m \ :
m

l=1

(2sl&i:2l&1&i:2l)+ (1.1)

where

9m(u)={31(u),
H1(u),

if m=odd
if m=even

(1.2)

k is the elliptic modulus, K the complete elliptic integral of the first kind,
and 3, H, 31 , and H1 are Jacobi theta functions.

Years later Baxter repeated the challenge(14) to two of us and soon after
we were able to derive his result, restricted to the critical temperature at
first, starting from quadratic recurrence relations(15) for general planar Ising
models expressing the fermionic nature(3, 4) of the model. As a byproduct we
obtained several other determinant and Pfaffian representations(16, 17) for the
correlation function of the Z-invariant Ising model. More recently, Reyes
Mart@� nez(18, 19) derived the above formula (1.1) and further Pfaffian results
while starting from the vertex operator approach.(20, 21)

The agreement between these three different methods provides very
strong support for the validity of this vertex operator approach and opens
the door to applications. The original result (1.1), as Baxter has said it
himself, (12) is ``rather unwieldy,'' not easily analyzed. But the Z-invariant
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Ising model is an attractive exactly solvable model for studying quasicrys-
tals and quasiperiodic systems.(22�29)

Therefore, we dedicate the current work, flowing forth from our
attempt to apply what we learned from Baxter to calculate the structure
function of Z-invariant quasiperiodic systems, as a birthday present to
Dr. Baxter.

2. INTRODUCTION

The wavevector-dependent susceptibility /(q) is in many ways similar
to the static structure factor S(q)=(\̂(q) \̂(&q)) , with \̂(q) the Fourier
transform of the local density \(r). Just like S(q), /(q) gives information on
the average relative locations of the atoms. It can also be determined
experimentally and for the Ising model /(q) even translates into the static
structure factor of the equivalent lattice gas model.

Since /(q) is a sum of spin correlation functions, at this time it cannot
be explicitly calculated in most of the solvable models of statistical
mechanics. One exception2 to be considered in the current work is the two-
dimensional Ising model whose correlation functions have been intensively
studied by many authors.(4, 7�19, 31�38)

More specifically, we shall study exactly the q-dependent susceptibility
of certain Fibonacci Ising models in order to obtain some insight in the
theory of aperiodic crystals. Since these are very crude models, one does
not expect them to represent any existing physical systems, even though
with modern experimental techniques one should be able to grow crystals
that are well approximated by them.

Here we choose to study only those models whose correlation func-
tions can be related to the one of the regular Ising model. This then
excludes the models considered by Tracy(39, 40) that are not Z-invariant.
Our crude models can nevertheless be used to gain theoretical understand-
ing as to what is the most important factor that would reproduce the
infinitely many and everywhere dense peaks in the q-dependent suscep-
tibility, or in the diffraction patterns(41�43) in quasicrystals. The following
are the points we would like to consider.

2.1. Aperiodic as Limit of Periodic

When it was discovered that there is a clear five-fold symmetry in the
diffraction patterns(44) of a certain alloy, which is a symmetry incompatible
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with any crystallographic space group, this alloy was called an icosahedral
quasicrystal.(44, 45) In order to explain this, Pauling then suggested that this
was caused by a crystal structure with a gigantic unit cell, (46) which can
also have such a five-fold symmetry.

To gain some theoretical understanding of this problem, we study the
wavevector-dependent susceptibility of a sequence of Ising lattices whose
edge interactions take different��either positive or negative��values peri-
odically and aperiodically. More specifically, the aperiodic lattice is a limiting
case of a sequence of periodic lattices whose period Fn is the n th element
in the Fibonacci sequence, satisfying the defining relation

Fn+1=Fn+Fn&1 , F0=F1=1 (2.1)

We shall compare the results for the periodic case with period Fn with the
aperiodic case with Fn � � for different correlation lengths. This may shed
some light on the difference of assuming that the system is quasiperiodic or
just a system with a large unit cell.

2.2. Order Versus Disorder

To understand why the randomized icosahedral system(47) gives almost
the same diffraction pattern as a quasicrystal, we study the q-dependent
susceptibility for T>Tc and T<Tc . Since above Tc the system is in a
disordered state, whereas below Tc the system is in an ordered state, this
contrast may enable us to determine whether the distinction that the system
is ordered or disordered is indeed irrelevant.

2.3. Mixed Attractive and Repulsive Interactions

Many of the earlier results on Ising models on Penrose tilings(26, 28, 48, 49)

and on the Fibonacci Ising chain(50) all assumed ferromagnetic couplings
only and it was found that they belong to the same universality class as the
periodic case without finding real interesting results. We study here the
q-dependent susceptibility for both ferromagnetic and mixed Fibonacci
Ising lattices. The contrast of the susceptibilities of the two cases��one with
ferromagnetic bonds only, the other with antiferromagnetic bonds also��is
remarkable, however.

2.4. Outline

The paper is organized as follows. First, in Section 3 we present some
definitions and a system of quadratic relations(15) for the pair correlation
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function in the uniform and symmetric Ising model. In Section 4 we explain
how we compute the diagonal correlation functions for the uniform case,
either using Toeplitz determinants or the method of Jimbo and Miwa.(36)

In Section 5 we present our results for the wavevector-dependent suscep-
tibility in the Fibonacci Ising model with ferro- and antiferromagnetic
interactions of equal strength with signs given by Fibonacci sequences.
Next, in Section 6 we derive the scaled pair correlation function for Baxter's
inhomogeneous Z-invariant Ising model. We use these results to give some
discussion of the purely ferromagnetic Z-invariant Ising model with couplings
of unequal strength in Section 7. Finally, we present our conclusions in
Section 8.

3. DEFINITIONS AND QUADRATIC RECURRENCE RELATIONS

In this section we briefly review some old results in order to fix notations.

3.1. Symmetric Uniform Ising Model on Quadratic Lattice

The symmetric two-dimensional Ising model is defined by the interac-
tion energy

E=&J :
m, n

(_m, n_m, n+1+_m, n_m+1, n) (3.1)

For this model it is convenient to define the elliptic modulus(2)

k=sinh2(2J�kBT ) (3.2)

which satisfies k<1 for T>Tc and k>1 for T<Tc , with k � 1�k giving
the Kramers�Wannier duality transformation.

The spontaneous magnetization is simply given by(5�7, 10)

(_)={(1&k&2)1�8,
0,

T<Tc

T�Tc

(3.3)

The calculation of the pair correlation function C(m, n) and the con-
nected pair correlation function C (c)(m, n), defined by

C(m, n)=(_0, 0_m, n) and C (c)(m, n)=(_0, 0_m, n)&(_) 2 (3.4)

is non-trivial. Already a long time ago, this correlation function C(m, n)
has been expressed in terms of determinants(4, 7, 10) of size proportional to
the distance of the spins.
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But such an expression is not that useful for calculating wavevector-
dependent susceptibilities

/(qx , qy)=
1

NkBT
:

m1 , n1

:
m2 , n2

eiqx(m1&m2)+iqy(n1&n2)

_((_m1 , n1
_m2 , n2

)&(_m1 , n1
)(_m2 , n2

) ) (3.5)

unless the correlation length is extremely small. Here N is the number of
sites of the lattice and we have given the expression in a form that it is
valid for nonuniform lattices also.

We will show in a later section that we can obtain interesting quasi-
crystal behavior by using a gauge transformation making the interactions
ferro- or antiferromagnetic according to Fibonacci sequences. But, in order
to see many peaks, the correlation length can not be small. Even though
many papers on Fibonacci Ising models have been written, to our knowl-
edge, no susceptibility calculations have been reported.

3.2. Quadratic Identities for Two-Point Correlation Function

We can avoid calculating millions of large determinants using a new
method combining two systems of quadratic recurrence relations that have
been around for two decades.(15, 36) This has never been tried before since
the second work is not well-understood and its errata(36) has been pub-
lished in an obscure place.

The first set of quadratic difference equations has been discovered by
one of us(15) and for the symmetric case they reduce to

[C(m, n+1) C(m, n&1)&C(m, n)2]

+k[C*(m+1, n) C*(m&1, n)&C*(m, n)2]=0 (3.6)

[C(m+1, n) C(m&1, n)&C(m, n)2]

+k[C*(m, n+1) C*(m, n&1)&C*(m, n)2]=0 (3.7)

[C(m, n) C(m+1, n+1)&C(m+1, n) C(m, n+1)]

=k[C*(m, n) C*(m+1, n+1)&C*(m+1, n) C*(m, n+1)] (3.8)

- k[C(m+1, n) C*(m&1, n)+C(m&1, n) C*(m+1, n)

+C(m, n+1) C*(m, n&1)+C(m, n&1) C*(m, n+1)]

=(k+1) C(m, n) C*(m, n) (3.9)
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where C*(m, n) is the dual (low-temperature) correlation function obtained
by replacing k � 1�k. Equations (3.6), (3.7), and (3.9) do not hold for
m=n=0 and

C(1, 0)=- k+1&- k C*(0, 1), C(0, 1)=- k+1&- k C*(1, 0)

(3.10)

is found in that case instead.
In order to apply these relations, it is necessary to have the diagonal

correlation functions (with m=n=N ). For the symmetric case we have

C(N, N+1)=C(N+1, N ) and C*(N, N+1)=C*(N+1, N )

(3.11)

and these, together with all other pair correlation functions, can then be
calculated recursively using (3.6)�(3.9). For T=Tc , we have the result
known already to Onsager and Kaufman(4, 7, 10)

C(N, N )=C*(N, N )= `
N

j=1

1( j )2

1( j+1�2) 1( j&1�2)
(3.12)

For the general case, T{Tc , we have used the system of quadratic
recurrence relations of Jimbo and Miwa(36) to be discussed in the following
section.

4. DIAGONAL CORRELATIONS: TOEPLITZ DETERMINANTS
AND QUADRATIC RECURRENCE RELATIONS

In this section we shall present the two ways we have used to calculate
the diagonal correlation function.

4.1. Diagonal Correlations as Toeplitz Determinants

The first method derives from the fact that the diagonal correlations
are given in terms of the Toeplitz determinants(7, 10)

(_00_NN) =det1�i, j�N [ai& j ],
(4.1)

(_00 _NN)*=det1�i, j�N [a*i& j ]
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with

an=
1

2? |
?

&?
d%

k cos n%&cos(n+1) %

- 1+k2&2k cos %
(4.2)

an*=
1

2? |
?

&?
d%

cos n%&k cos(n+1) %

- 1+k2&2k cos %
(4.3)

Here the asterisk denotes the dual version with k replaced by 1�k.
These elements have been expressed in terms of Legendre functions of

the second kind(7, 32) or hypergeometric functions. (33) For numerical pur-
poses it is more opportune to use recurrence relations. We believe that
these linear recurrence relations will also provide the first step in giving an
algebraic derivation of the system of quadratic recurrence relations dis-
covered by Jimbo and Miwa(36) discussed in the next subsection and used
in our numerical computations.

Defining the auxiliary quantities

bn=
1

2? |
?

&?
d%

cos n%

- 1+k2&2k cos %
=b&n (4.4)

cn=
1

2? |
?

&?
d% cos n% - 1+k2&2k cos % =c&n (4.5)

we have

an=kbn&bn+1 , or a&n=kbn&bn&1 , for T>Tc (4.6)

and

an*=bn&kbn+1 , or a*&n=bn&kbn&1 , for T<Tc (4.7)

Note that

an*=&a&n&1 , an=&a*&n&1 (4.8)

so that the Toeplitz determinants for T<Tc are also minors of the Toeplitz
determinants for T>Tc and vice versa. It may be noted that b0 and c0 are
complete elliptic integrals of the first and second kind.

Since

(1+k2&2k cos %) cos n%=(1+k2) cos n%&k cos(n+1) %&k cos(n&1) %
(4.9)
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we have

cn=(1+k2) bn&kbn+1&kbn&1 (4.10)

On the other hand, using partial integration,

cn=&
k

2?n |
?

&?
d%

sin n% sin %

- 1+k2&2k cos %
=

k
2n

(bn+1&bn&1) (4.11)

These two equations imply

(2n&1) kbn&1&2n(1+k2) bn+(2n+1) kbn+1=0 (4.12)

(It may be worth noting that for the row correlations this three-point relation
is replaced by a similar five-point relation.)

We can also solve

(1&k2) bn=an*&kan=ka*n&1&an&1 (4.13)

and find

(2n+1) an=2nk&1an&1&a*n&1=2(n+1) kan+1+a*n+1 (4.14)

(2n+1) an*=2nka*n&1&an&1=2(n+1) k&1a*n+1+an+1 (4.15)

or

(2n+1) an=2nk&1an&1&a&n=2(n+1) kan+1+a&n&2 (4.16)

(2n+1) a&n&1=2nka&n&an&1=2(n+1) k&1a&n&2+an+1 (4.17)

With these relations we can quickly calculate the elements of the Toeplitz
determinants (4.1).

For the next-to-the-diagonal correlation function we have determinant
expressions(16) like (4.1) but now with one row or column modified. These
new elements satisfy similar recursion relations, which we shall present in
a future publication. These results are needed when calculating or plotting
correlation functions and q-dependent susceptibilities for nonsymmetric
cases in which the absolute value of the coupling constants vary. We have
done such calculations, but in this paper we will not present the details as
our best results are based on the easier symmetric case.

4.2. Jimbo�Miwa Method

To calculate the diagonal Ising correlations, which are given above as
Toeplitz determinants, turns out to be a nontrivial numerical problem. We
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have found that in order to obtain accuracy of just ten significant figures
in the final results, due to large cancellations, it is necessary to evaluate the
elements of these determinants to high accuracy, as high as 250 digits,
using a program like Maple. This is time and memory consuming even for
today's powerful computers. Since we did such calculations, we have learnt
from Dr. Nickel an efficient algorithm(53) to do these calculations.

However, there exists an even more efficient method for calculating the
diagonal correlations using the recursion formulae of Miwa and Jimbo.(36)

Then, for the symmetric case of the square Ising lattice with equal horizontal
and vertical couplings, using the difference equations of the previous section
we are able to obtain the correlations everywhere else, with distances between
the spins up to several hundred lattice distances, in a matter of minutes on
a desktop computer.

We make a slight change of notation with respect to Eq. (4) of ref. 36.
The translation of the dependent variables is given by

AN=- k$ :&N , BN=- k$ ;&N , CN=&- k$ #&N ,

A\
N =- k$ : (\)

&N , B\
N =- k$ ; (\)

&N , C \
N =&- k$ # (\)

&N , (4.18)

D\
N =- k$ $ (\)

&N , k$=- 1&k2, t=1�k2

Then the diagonal correlation functions are given by Eq. (6) of ref. 36, i.e.,

AN=C(N, N ), CN=C*(N, N ) (4.19)

The three determinant conditions below Eq. (6) of ref. 36 become

AN&1AN+1+BNCN&A2
N=0 (4.20)

A\
N D\

N +B\
N C \

N &A2
N=0 (4.21)

The eight autonomous equations in Eq. (5) of ref. 36 are rewritten as

ANA\
N+1&AN+1A\

N +BN+1C \
N+1=0 (4.22)

ANB\
N+1&k\1AN+1B\

N &BN+1 D\
N+1=0 (4.23)

k\1ANC \
N+1&AN+1C \

N +CNA\
N =0 (4.24)

AN D\
N+1&AN+1D\

N &CN B\
N =0 (4.25)
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while the five non-autonomous equations become

(2N&1) AN+1AN&1&(2N+1) A2
N+A+

N D+
N +A&

N D&
N =0 (4.26)

(2N+3) ANBN+1+kA+
N B+

N +k&1A&
N B&

N =0 (4.27)

(2N+1) ANCN+1+C +
N+1D+

N+1+C &
N+1D&

N+1=0 (4.28)

(2N&1) AN+1BN+A+
N B+

N +A&
N B&

N =0 (4.29)

(2N+1) AN+1CN+kC +
N+1D+

N+1+k&1C &
N+1D&

N+1=0 (4.30)

(2N&1) BNCN+B+
N C +

N +B&
N C &

N =0 (4.31)

Here the last equation (4.31) is new; it shows up as a condition when going
through the details of the derivation in ref. 36; it is simpler than (4.26) from
which it follows using (4.20) and (4.21).

Using Eq. (7) of ref. 36 the initial conditions are rewritten as

A0=B0=C0=1, B+
0 =D&

0 =k$, C +
0 =A&

0 =
1
k$

, D+
0 =C &

0 =0,

A1=
2
?

E(k), A+
0 =

2
?k$

[2E(k)&K(k)], B&
0 =

2k$
?

[K(k)&E(k)]

(4.32)
where B&

0 is transcribed from the errata.(36)

The above equations are not all independent. Together with additional
equations like (3.6)�(3.10), they form an overdetermined set of difference
equations for the Ising model pair correlation function. Hence, the word
``holonomic'' in the title of ref. 36. We only need a subset of (4.20)�(4.32) to
write an algorithm in order to obtain the initial conditions for (3.6)�(3.9).

In our Maple programs we have used the following eleven equations

BN+1=&
kA+

N B+
N +k&1A&

N B&
N

(2N+3) AN
,

C \
N+1=

AN+1C \
N &CNA\

N

k\1AN
, D\

N+1=
AN+1D\

N +CNB\
N

AN
,

(4.33)

CN+1=&
C +

N+1D+
N+1+C &

N+1D&
N+1

(2N+1) AN
,

A\
N+1=

AN+1A\
N &BN+1 C \

N+1

AN
, B\

N+1=
k\1AN+1 B\

N +BN+1D\
N+1

AN
,

AN+2=
A2

N+1&BN+1 CN+1

AN

recursively.
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The derivation in ref. 36 is terse and not easy to follow. No alternative
derivation has ever been published. We have realized several of the above
identities as Jacobi identities of Toeplitz determinants for AN , BN , CN , and
rewriting most of the other objects as similar determinants with one row or
column modified. We hope to use this to show that Miwa�Jimbo type
recursion formulae also exist for the correlations on the next-to-the
diagonal row in the asymmetric case. But as all this work is incomplete for
now, we shall not discuss it further.

Also, a reader who is uncomfortable with the derivation presented in
ref. 36, should have no difficulty showing that the recurrence relations given
above are correct. He can do this reproducing exactly the results from the
Toeplitz determinants, analytically for shorter distances and numerically up
to much larger distances.

5. FIBONACCI ISING MODEL WITH FERRO- AND
ANTIFERROMAGNETIC BONDS OF EQUAL STRENGTH

So far we have discussed the correlation functions of the ferromagnetic
Ising model on the square lattice with all interactions of equal strength. We
can make interactions ferro- and antiferromagnetic according to Fibonacci
rules using gauge transformations.

5.1. Definition of Fibonacci Ising model

We start by considering a two-dimensional square-lattice Ising model
whose energy of interaction is defined by3

&E�kBT=:
i, j

[K i, j _i, j_i+1, j+K� i, j_ i, j_ i, j+1] (5.1)

There are many possible ways of forming a Fibonacci Ising lattice. One of
our choices is to let Ki, j=Ki and K� i, j=K� j and to choose either the Ki or
the K� j or both to be Fibonacci sequences.

The infinite set of Fibonacci sequences [Sn] is defined recursively
by Sn+1=Sn Sn&1 with S0=B and S1=A; then S2=AB, S3=ABA,
S4=ABAAB and so on. This uses symbols A and B that can represent
many different things. The sequence Sn has Fn symbols with Fn the n th
Fibonacci number given in (2.1).
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The Fn -layered Ising model(39, 40, 51, 52) is formed by periodically
repeating a unit cell of size Fn , such that inside each unit cell Ki (or K� j )
is either KA or KB , depending upon whether the i th (or j th) position corre-
sponds to an A or B in Sn . In the limit Fn � �, it becomes an aperiodic
Fibonacci Ising lattice. In this section we shall further restrict ourself to the
case with KA=&K and KB=K, where K>0 so that the antiferromagnetic
interactions are more abundant. It is well-known that the other case,
KA=K and KB=&K, follows by flipping the sign of each second spin,
which will only lead to a shift qx � qx\? and�or qy � qy\? in the
/(qx , qy).

Unlike the model studied by Tracy, (39) the critical temperature and
free energy in these cases are identical to the ones in the ferromagnetic case.
This can be easily seen as follows. Let N(i ) denote the number of negative
bonds among [K1 , K2 ,..., Ki&1] and N� ( j ) the number of negative bonds
among [K� 1 , K� 2 ,..., K� j&1]. Then we can define the gauge transformation

_i, j � (&1)N(i )+N� ( j ) _i, j (5.2)

The partition function, which is a sum over all the spin variables, is
invariant under such spin flips and the resulting sum equals the partition
function of the ferromagnetic model. Consequently, the free energy is
invariant.

5.2. Fibonacci in Both Horizontal and Vertical Directions

However, the connected pair correlation function is easily seen to pick
up signs, i.e.,

(_i1 , j1
_i2 , j2

) (c) � (&1)N(i1)+N� ( j1)+N(i2)+N� ( j2) (_i1 , j1
_ i2 , j2

) (c)
0 (5.3)

where (_i1 , j1
_i2 , j2

) 0 is the correlation function in the regular ferromagnetic
square Ising model and the superscript (c) is used to indicate that we are
having connected two-point correlation functions given by

(_i1 , j1
_i2 , j2

) (c)=(_ i1 , j1
_i2 , j2

)&(_i1 , j1
)(_ i2 , j2

) (5.4)

Hence, due to these sign factors in the Fn -layered Fibonacci Ising model,
the q-dependent susceptibility defined by

kBT/(qx , qy)= lim
L � �

1
L2 :

l1 , m1

:
l2 , m2

e i[qx(l2&l1)+qy(m2&m1)](_l1 , m1
_ l2 , m2

) (c)

(5.5)
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where L=LFn is both the number of rows and columns in the lattice, with
L denoting some positive integer, is different from that in the ferromagnetic
case. We may rewrite

kBT/(qx , qy)= :
�

l, m=&�

ei(qxl+qym)C (c)(l, m) (5.6)

where

C (c)(l, m)= lim
L � �

1
F 2

n

:
Fn&1

l $, m$=0

(_ l $, m$_ l+l $, m+m$) (c) (5.7)

averaging over the unit cell.
We can simplify this using a result obtained by Tracy.(39) We let

N(m, m$) be the number of negative horizontal bonds (or A's in the
Fibonacci sequence) among the m bonds sandwiched between the m$th and
(m$+m)th columns. Using Lemma 2.5 in ref. 39, we find that N(m, m$) is
either wNm x or wNm x+1, where Nm=mFn&1 �Fn and wxx denotes the
integer part of x. Furthermore, in the interval 0�m$�Fn&1, the number
of times that N(m, m$) equals wNm x is Fn(1&[Nm]), where [x] is the frac-
tional part of x, while the number of times that N(m, m$) equals wNm x+1
is Fn[Nm]. A similar relation holds for the vertical bonds. Consequently,
we find from (5.3) and (5.7) that

C (c)(l, m)=,n(l ) ,n(m)(_0, 0_ l, m) (c)
0 =,n(l ) ,n(m) C (c)

0 (l, m) (5.8)

where the averaged phase factor is

,n(m)=(&1)wNmx (1&[Nm])+(&1)wNmx+1 [Nm]

=(&1)wm:nx (1&2[m:n]), :n#Fn&1 �Fn (5.9)

and C (c)
0 (l, m) is readily calculated using the methods of Sections 3 and 4.

Using the simple relation wxx=x&[x], we may rewrite

,n(m)=e?im:n �(m:n), with �(x)#e&?i[x](1&2[x]) (5.10)

Then, as �(x) is a periodic continuous function of period 1, it is easy to
show that it has the Fourier series

�(x)= :
�

p=&�

e2?ipx

( p+1�2)2 ?2 (5.11)
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Next, writing p= jFn+l for &�< j<� and 0�l�Fn&1, and noting
that jFnm:n is an integer, we find

,n(m)= :
Fn&1

l=0

e2?i(l+1�2) :nm,� n(l ) (5.12)

,� n(l )# :
�

j=&�

1
( jFn+l+1�2)2 ?2=,� n(Fn&1&l ) (5.13)

Substituting (5.8) into (5.6) and then using (5.12), we find

/(qx , qy)= :
Fn&1

l=0

:
Fn&1

m=0

,� n(l ) ,� n(m)

_/0(qx+2?:n(l+1�2), qy+2?:n(m+1�2)) (5.14)

where /0 denotes the q-dependent susceptibility of the ferromagnetic
uniform two-dimensional Ising model and its maximum is at qx=qy=0
and for T � Tc this diverges as(11, 31)

/0(0, 0)rc\ |t| &7�4, t=
T
Tc

&1 B 1&k (5.15)

Therefore, there should be Fn_Fn peaks located at qx=2?:n(l+1�2) and
qy=2?:n(m+1�2) mod 2?, for 0�l, m�Fn&1. The predominant peaks
are seen to be at l=m=0 and l=m=Fn&1, or qx , qy=\?:n (mod 2?).

5.3. Aperiodic in Both Horizontal and Vertical Directions

In the limit n � � we have Fn&1 �Fn � :, with : being the golden
ratio, which is an irrational number. Then the effective connected correlation
function (5.9) tends to

C (c)(l, m)=,(l ) ,(m)(_0, 0_ l, m) (c)
0 =,(l ) ,(m) C (c)

0 (l, m) (5.16)

where the averaged phase factor (5.9) becomes

,(m)=,�(m)=(&1)wm:x (1&2[m:]), :# 1
2 (- 5&1) (5.17)

Also, Fn � � and it is easy to see that only j=0 and j=&1 in the sum
(5.13) contribute, so that we now have

,(m)= :
�

l=&�

e2?i(l+1�2) :m

(l+1�2)2 ?2=,(&m) (5.18)
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in this limit (with l�0 from j=0 and l<0 from j=&1). This can, of
course, also be derived directly from (5.17).

Therefore, in this aperiodic limit, the q-dependent susceptibility becomes

/(qx , qy)= :
�

l=&�

:
�

m=&�

/0(qx+2?:(l+1�2), qy+2?:(m+1�2))
(l+1�2)2 (m+1�2)2 ?4 (5.19)

which shows that it is made up from an infinite number of peaks densely
located in the square with qx and qy between 0 and 2?. For T away from Tc ,
the correlation length is finite and due to overlap only a finite number of
peaks will be observed. It may also be remarked that, because of the identity

:
�

l=&�

1
(l+1�2)2 ?2=1 (5.20)

the integrals of /(qx , qy) and /0(qx , qy) for qx , qy from 0 to 2? are the same
and, in fact, they both equal (2?)2�(kB T ) as they both are proportional to
the autocorrelation (_2

i, j) =1.
For all models in this section, obtained by gauge transformations adding

signs, the row (and column) correlation length ! is the same at the same
given elliptic modulus k. Above Tc it is given by (2, 8�10)

!&1=!&1
> (k)=|2K&2K*|=|arsinh(k1�2)&arsinh(k&1�2)| (5.21)

whereas below Tc , at k>1, it is precisely one half (8�10) of the above Tc

value at k � 1�k, i.e., !<(k)= 1
2 !>(1�k). This difference will also manifest

itself in the following.
First, we plot the q-dependent susceptibility /0(qx , qx) of the uniform

symmetric ferromagnetic Ising model. It is shown in Fig. 1 for three dif-
ferent values of the correlation length, !=1, 2 and 3. It has a single peak
at qx=qy=0, which becomes less tall and more broadened as T moves
away from Tc . This gives rise to a larger contribution to the background,
explaining why all but a few peaks are suppressed in the different Fibonacci
cases.

Next, we make plots for the n=4 and n=� Fibonacci Ising models.
We do this by calculating the Fourier sums (5.6) using (5.8) and algorithms
based on Sections 3 and 4. Since the correlation functions decay exponen-
tially, only a finite number of terms in (5.6) is significant. For !<3, there
are only four peaks in a unit cell of the reciprocal lattice, which are all sym-
metrically located on the lines qx=\qy (mod 2?). We plot one of these
peaks of /(qx , qx) for !=1, 2, 3 in Fig. 2. Figure 2a is for the periodic
layered case with period F4=5. According to (5.14) the location of the
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Fig. 1. The reduced q-dependent susceptibility of the ferromagnetic Ising model kBT/0(qx , qx)
is plotted versus q=qx=qy for !=1, 2, 3 and T>Tc . Its peak at q=0 becomes more sharp
as ! increases.

peak of the q-dependent susceptibility should approach qx=:4?=3?�5=
1.8850 as ! increases. Figure 2b is for the aperiodic case, for which the peak
approaches the limiting position qx=:?=1.9416 in agreement with (5.19).
Thus, the peaks approach different positions for the two cases, one com-
mensurate and the other incommensurate.

Fig. 2. The reduced q-dependent susceptibilities kBT/(qx , qx) of (a) the F4 -periodic and (b)
the aperiodic Fibonacci Ising models are plotted versus q=qx=qy for !=1, 2, 3 and T>Tc .
As ! increases, the peaks approach (a) the commensurate position 3?�5 for the periodic case
with F4=5 and (b) the incommensurate position :? for the aperiodic case.
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Fig. 3. Density plots of the q-dependent susceptibility for T>Tc : Here /(qx , qy) for the
aperiodic case with !=8 corresponding to k=0.8379 is shown in (a) and the periodic case
with F4=5 and again !=8 is shown in (b). Below each figure are shown density plots for a
different temperature corresponding to !=16 and k=0.9154 in (c) and (d). Note that the
periodic cases (b) and (d) have exactly 25 peaks regularly spaced.

Moreover, as ! � � there is an ever-increasing number of peaks for
the aperiodic case, as can be seen from (5.19), whereas there is a maximum
number of peaks in the periodic case, namely F 2

n according to (5.14). This
is illustrated in Fig. 3, where we give four density plots of the q-dependent
susceptibilities, two for the F4-layered case with F4=5 and two for the
aperiodic case. We have chosen T>Tc and !=8 for the top figures and
!=16 for the bottom ones.

Each plot has the square qx , qy from 0 to 2? subdivided into 50_50
little squares, where a darker texture indicates a larger value of /(qx , qy).4
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The figures for the periodic case on the right show that the number of
peaks for !=8 equals the number of peaks for !=16, both numbers
equalling F 2

4=25. In the left two plots, we show that for the aperiodic
lattice there are more peaks than in the periodic case and their number is
increased when the correlation length is doubled. We see that the periodic
and aperiodic cases are quite different, unless the size of the unit cell Fn is
fairly large, so that (5.14) and (5.19) are hard to distinguish numerically.
Therefore, the point raised in Section 2.1 is a valid one.

Next, in order to study the point brought up in Section 2.2, we have
to compare results for ordered and disordered states. For this purpose, we
have given density plots of the q-dependent susceptibility for the aperiodic
Fibonacci Ising model for T>Tc in Fig. 4 and for T<Tc in Fig. 5. We find
that there are more peaks in the q-dependent susceptibility for T>Tc than
for T<Tc , when comparing Fig. 4 and Fig. 5. This is a consequence of the

Fig. 4. Density plots of /(qx , qy) for T>Tc for a lattice with aperiodicity in both the
horizontal and vertical directions: (a) !=1 corresponding to k=0.2364; (b) !=4 or
k=0.7019; (c) !=12 or k=0.8888; and (d) !=20 or k=0.9317.
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Fig. 5. Density plots of /(qx , qy) for T<Tc for a lattice with aperiodicity in both the
horizontal and vertical directions: (a) != 1

2 corresponding to k=4.2309; (b) !=2 or
k=1.4248; (c) !=6 or k=1.1251; and (d) !=10 or k=1.0733. These parameters follow from
the dual parameters of Fig. 4 by the replacements k � 1�k and ! � 1

2 !. In the Ising model,
there are no ``single-particle excitations'' for T<Tc , explaining the twice faster exponential
decay of the connected correlations.

well-known fact(8�10) that the connected correlation function for T<Tc

decays with the correlation length 1
2 !, with ! the correlation length of the

dual temperature above Tc , see also the discussion below (5.21). Using the
methods of Sections 3 and 4 it is natural to generate the pair correlation
functions for dual pairs of temperatures corresponding to pairs k and 1�k,
and this is what we have done to generate the two sets of plots.

We conclude from our results that the disordered and the ordered
states can both exhibit the everywhere dense and incommensurate peaks in
the wavevector-dependent susceptibility. We have even verified that the
plots of these two cases are fairly similar, provided the correlation lengths
coincide. Therefore, we shall only show T>Tc plots in the following.
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5.4. Aperiodic Only in the Horizontal Direction

If the model is aperiodic only in the horizontal direction, we must
replace (5.16) by

C (c)(l, m)=,(l )(_0, 0_l, m) (c)
0 =,(l ) C (c)

0 (l, m) (5.22)

with ,(l ) still given by (5.17) and (5.18). Instead of (5.19) we now have

/(qx , qy)= :
�

l=&�

/0(qx+2?:(l+1�2), qy)
(l+1�2)2 ?2 (5.23)

which shows that /(qx , qy) has peaks on the qx axis.
The density plot of the q-dependent susceptibility for T>Tc is given

in Fig. 6 for different values of the correlation length. This is again done by

Fig. 6. Density plots of /(qx , qy) for T>Tc for a lattice with aperiodicity in the horizontal
direction only. (a) !=1 corresponding to k=0.2364; (b) !=4 or k=0.7019; (c) !=12 or
k=0.8888; and (d) !=20 or k=0.9317.
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calculating a truncated sum (5.6), but now using (5.22). We indeed find
that the peaks become more and more dense on the line qy=0.

5.5. Aperiodic in One Diagonal Direction

If the model is aperiodic only in one diagonal direction, we choose the
sign of the bonds the same in each (anti)diagonal staircase. It is not hard
to see that we must now replace (5.16) by

C (c)(l, m)=,(l+m)(_0, 0_l, m) (c)
0 =,(l+m) C (c)

0 (l, m) (5.24)

with ,(l ) again given by (5.17) and (5.18). Instead of (5.19) we find

/(qx , qy)= :
�

l=&�

/0(qx+2?:(l+1�2), qy+2?:(l+1�2))
(l+1�2)2 ?2 (5.25)

which shows that /(qx , qy) has peaks on the qx=qy diagonal.
The density plot of the q-dependent susceptibility for T>Tc is given

in Fig. 7 for different values of the correlation length. This is again done by
calculating a truncated sum (5.6), but now using (5.24). We indeed find
that the peaks become more and more dense on the line qx=qy .

5.6. Aperiodic in Both Diagonal Directions

If the model is aperiodic in both of the diagonal directions, we must
replace (5.16) by

C (c)(l, m)=,(l+m) ,(l&m) C (c)
0 (l, m) (5.26)

with ,(l ) still given by (5.17) and (5.18). Instead of (5.19) we can derive

/(qx , qy)= :
�

l=&�

:
�

m=&�

/0(qx+2?:(l+m+1), qy+2?:(l&m))
(l+1�2)2 (m+1�2)2 ?4 (5.27)

This looks asymmetric at first sight, but the simple replacement m �
&m&1 shows that indeed /(qx , qy)=/(qy , qx). Equation (5.27) proves
that /(qx , qy) has peaks which become everywhere dense as T � Tc .

The density plot of the q-dependent susceptibility for T>Tc is given
in Fig. 8 for different values of the correlation length. This is also done by
calculating a truncated sum (5.6), but now using (5.26). This case gives the
most spectacular plots with incommensurate peaks that become more and
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Fig. 7. Density plots of /(qx , qy) for T>Tc for a lattice with aperiodicity in one of the
diagonal directions only. (a) !=1 corresponding to k=0.2364; (b) !=4 or k=0.7019;
(c) !=12 or k=0.8888; and (d) !=20 or k=0.9317.

more dense in the plane, showing that the number of peaks is related to the
correlation length.

6. SCALING LIMIT FOR TWO-POINT CORRELATION
FUNCTION IN Z-INVARIANT ISING MODEL

In this section we shall derive a new result for the two-point correlation
function of the Z-invariant Ising model in the scaling limit.

6.1. Z-Invariant Ising Model

The Z-invariant inhomogeneous Ising model(12, 13) has been intro-
duced by Baxter as a natural extension of Onsager's uniform Ising model
within the framework of star-triangle equations and commuting transfer
matrices. It is defined in terms of a set of oriented straight lines carrying
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Fig. 8. Density plots of /(qx , qy) for T>Tc for a lattice with aperiodicity in both diagonal
directions. (a) !=1 corresponding to k=0.2364; (b) !=4 or k=0.7019; (c) !=12 or
k=0.8888; and (d) !=20 or k=0.9317.

``rapidity'' variables ui . Only two lines can meet at each intersection and
the areas separated by the rapidity lines can be colored alternatingly black
and white. An Ising spin is associated with each black area and a dual Ising
spin with each white area, see also Fig. 9.

This defines two Ising models. In the first one each pair of spins meet-
ing at an intersection of two rapidity lines has the usual pair interaction
&K_x_y with reduced interaction strength K=;J. In the second model the
two dual spins that meet at the same intersection interact as &K*_x*_y* ,
where sinh(2K ) sinh(2K*)=1. Here K and therefore also K* only depend
on a fixed elliptic modulus k and the two rapidity variable u1 and u2 of the
two rapidity lines that meet.

We have two possible choices for the reduced interaction strength Kx, y

of the spins at positions x and y, see Fig. 10. If the two rapidity lines with
rapidity variables u1 and u2 pass through the line connecting the two spins

524 Au-Yang, Jin, and Perk



File: 822J 283625 . By:XX . Date:11:12:00 . Time:10:15 LOP8M. V8.B. Page 01:01
Codes: 2263 Signs: 1522 . Length: 44 pic 2 pts, 186 mm

Fig. 9. The lattice of a two-dimensional Z-invariant Ising model is represented by solid lines,
the rapidity lines on the medial graph are represented by oriented dashed lines. These lines
carry rapidity variables ui and vj . The position of the spins are indicated by small black
circles, the positions of the dual spins by white circles.

toward the same side of that line, we must choose Kx, y=K(u1 , u2); other-
wise, if they pass toward opposite sides, we must take Kx, y=K� (u1 , u2).
These choices K(u1 , u2) and K� (u1 , u2) are given by

sinh(2K(u1 , u2))=k sc(u1&u2 , k$)=cs(K(k$)+u2&u1 , k$),
(6.1)

sinh(2K� (u1 , u2))=cs(u1&u2 , k$)=k sc(K(k$)+u2&u1 , k$)

where k$=- 1&k2 is the complementary elliptic modulus, K(k) denotes the
complete elliptic integral of the first kind, and sc(v, k)=sn(v, k)�cn(v, k)
and cs(v, k)=cn(v, k)�sn(v, k) are Jacobi elliptic functions. There is still a
sign ambiguity in (6.1) depending on which of the two rapidity lines carries
u1 and which u2 . This ambiguity is removed if we take u1 to be the rapidity
variable of the line that points in a direction (less than 180%) clockwise
with respect to the other rapidity line. [In Fig. 10 we have to identify ui as
the u1 and vj as the u2 of (6.1).]

Equation (6.1) also exhibits a remarkable ``rotation symmetry'' in this
Z-invariant Ising model. We can flip the direction of a rapidity line j
providing we change its rapidity variable uj to uj\K(k$). This interchanges

Fig. 10. (a) The horizontal coupling Kij and (b) the vertical coupling K� ij .
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the K and K� choices in (6.1). It is a simple exercise to see that this is consis-
tent using sc(v+2K(k$), k$)=sc(v, k$) and the corresponding periodicity
formula for cs(v, k$)=1�sc(v, k$). This symmetry plays an important role in
the calculation of the correlation functions and was noted before. We shall
now exploit it.

In the Z-invariant Ising model, following Baxter's argument, (12, 13) the
two-point correlation function can only depend on the elliptic modulus k
and the values of the 2m rapidity variables u1 ,..., u2m that pass between the
two spins under consideration. Hence, there should exist universal functions
g2 ,..., g2m such that for the appropriate m-value

(__$) = g2m(k; u� 1 ,..., u� 2m)= g2m(k; u� P(1)+v,..., u� P(2m)+v) (6.2)

where u� j=uj if the j th rapidity line passes between the two spins _ and _$
in a fixed chosen direction and(16) u� j=uj+K(k$) if it passes in the opposite
direction. The Z-invariance implies that there should be complete permuta-
tion symmetry under all permutations P of the rapidities and the ``difference
property'' implies a translation invariance when shifting all the u j by the same
amount v. These properties have been expressed in the above equation.

If two rapidity variables differ by K(k$), they can be viewed as belonging
to a single rapidity line passing between the two spins and back. The
correlation function cannot depend on them, i.e.,

(__$)= g2m+2(k; u� 1 ,..., u� 2m , u� 2m+1 , u� 2m+1+K(k$))

= g2m(k; u� 1 ,..., u� 2m) (6.3)

6.2. Scaling Limit

We can use these properties (6.2) and (6.3) to propose a formula for
the two-point function in the scaling limit, where k � 1 and the distance of
the spins tends to infinity. In this limit we have K(k$)= 1

2 ?,

sinh(2K(u1 , u2))=tan(u1&u2)=cot(\ 1
2 ?+u2&u1) (6.4)

sinh(2K� (u1 , u2))=cot(u1&u2)=tan(\ 1
2 ?+u2&u1) (6.5)

The scaling limit is defined by the assumption that the scaled correlation
function depends on a single distance variable R. We can view the rapidity
variables as angle variables, and the translation symmetry in (6.3) becomes
a rotation symmetry in a two-dimensional plane. Writing the uj in terms
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of unit vectors ej=(cos(*uj ), sin(*uj )), the simplest expression for R that
exhibits the required rotation and permutation symmetries is

R=C } :
2m

j=1

ej } or R=
1
2 _{ :

2m

j=1

cos(2uj )=
2

+{ :
2m

j=1

sin(2uj )=
2

&
1�2

(6.6)

We can only have *=2 in view of (6.3) which says that any pair u and
u+ 1

2 ? must cancel out.5 It appears that the only freedom available is the
scale factor C which we can choose to be C= 1

2 .
For the special case of diagonal correlations (_00 _mm) in the uniform

rectangular Ising model, for which all 2m uj 's are equal, we find from (6.6)
R=m, justifying the above choice of C. In this special case the correlation
length !d is known(10) and we can use it to introduce the scaled distance6

r=R�!d , where !&1
d =|log k| (6.7)

We can now propose the general form of the scaled correlation functions
to be

(__$) r |1&k&2| 1�4 F(r), (__$)*r |1&k&2|1�4 G(r) (6.8)

where the functions F(r) and G(r) are expected to be Painleve� functions
and the front factor is the square of the spontaneous magnetization for
T<Tc or k>1.

We leave it as an exercise to the reader to verify that these scaling
forms agree with all existing results for the uniform rectangular and tri-
angular Ising models.(11, 35) Some details will be presented in the next
section. We shall proceed with providing strong evidence that they are also
correct for the general Z-invariant Ising model.

For the most general planar Ising model we can use a quadratic iden-
tity relating the two-point correlation function (_x_y) with its counterpart
on the dual lattice (_x*_y*)*, i.e., (15)

sinh(2K1) sinh(2K2)[(_x1
_x2

)(_y1
_y2

)&(_x1
_y2

)(_y1
_x2

)]

+[(_x*1
_x*2

)* (_y*1
_y*2

)*&(_x*1
_y*2

)* (_y*1
_x*2

)*]=0 (6.9)
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Fig. 11. Part of an Ising model and its dual on a general planar graph: Indicated are two
neighbor pairs of spins indicated by small black circles with their reduced interaction
constants Ki (drawn lines). Also indicated are their corresponding two pairs of dual spins
indicated by white circles with their reduced interaction constants Ki* (dashed lines). Note
that both (x1 , x1* , y1 , y1*) and (x2 , x2* , y2 , y2*) are arranged clockwise.

see also Fig. 11. Here we have two arbitrarily chosen unequal nearest-
neighbor pairs of spins at the sites [x1 , y1]{[x2 , y2] with couplings
K1=;J1 , and K2=;J2 . Also we have their corresponding two nearest-
neighbor pairs of dual spins at sites [x1* , y1*] and [x2* , y2*] with couplings
K1* and K2* satisfying sinh(2Ki ) sinh(2Ki*)=1, (i=1, 2). The orientations
of the two quadruples of points (x1 , x1* , y1 , y1*) and (x2 , x2* , y2 , y2*) must
both be chosen the same for (6.9) to hold with a plus sign on the second
line. Many results can be derived from this one equation alone, which is an
ultimate statement of the fermionic character of the Ising model. In par-
ticular, (3.6)�(3.8) are specializations of (6.9) to the uniform symmetric
square lattice.(15)

Restricting ourselves to the Z-invariant Ising model the quadratic
identity reduces to

k2 sc(u2&u1 , k$) sc(u4&u3 , k$)

_[g(u1 , u2 , u3 , u4 ,...) g( } } } )& g(u1 , u2 ,...) g(u3 , u4 ,...)]

+[g*(u1 , u3 ,...) g*(u2 , u4 ,...)& g*(u1 , u4 ,...) g*(u2 , u3 ,...)]=0 (6.10)

suppressing all arguments but the four rapidity variables that differ among
the two-point functions g and g*. This result is easily derived assuming that
all rapidity lines pass between the spins in the same direction. Equa-
tion (6.10) is also applicable if some of the rapidity lines go in the opposite
direction, providing the corresponding uj are replaced by uj+K(k$), as
discussed above.

In the scaling limit k � 1, k$ � 0, (6.10) reduces to the leading term of

tan(u2&u1) tan(u4&u3)[F(r1234) F(r)&F(r12) F(r34)]

+[G(r13) G(r24)&G(r14) G(r23)]=0 (6.11)
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where we introduced the notations r for the scaled distance given in (6.6)
with only the uj variables common to all eight two-point functions occurring
and rij } } } for the scaled distance with the variables u i , uj ,... added. Also,
F and G are the scaling limit functions corresponding to g and g*, see (6.8).
More specifically, we can write

r cos �= 1
2 !&1 :

j{1, 2, 3, 4

cos(2uj ), r sin �= 1
2 !&1 :

j{1, 2, 3, 4

sin(2uj )

(6.12)

Since ! � � the few omitted terms are infinitesimally small.
Expanding to second order and doing straightforward manipulations

we arrive at

cos(u1+u2&�) cos(u3+u4&�)(FF"&F $2+r&1GG$)

+sin(u1+u2&�) sin(u3+u4&�)(GG"&G$2+r&1FF $)=0 (6.13)

where the primes denote differentiation with respect to r. Since this must
hold for all values of �, we conclude

FF"&F $2= &r&1GG$ (6.14)

GG"&G$2= &r&1FF $ (6.15)

These are the same equations as those that would follow from the qua-
dratic identities for the rotational-invariant scaling functions of the uniform
case.

6.3. Painleve� Equations

We can take the first derivative of (6.14), i.e.,

FF $$$&F $F"=&r&1GG"&r&1G$2+r&2GG$ (6.16)

Eliminating G$ and G" from (6.16) using (6.14) and (6.15), we find

G2=
&2r3(FF"&F $2)2

r2(FF $$$&F $F")+r(FF"&F $2)&FF $
(6.17)

Taking the first derivative of this and substituting it in (6.14), we find a
closed equation for F(r), namely

(FF"&F $2)(r4F $$$$&2r2F"+rF $)+FF $2

+r4(2F $F"F $$$&FF $$$2&F"3)=0 (6.18)
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Clearly, G(r) satisfies the same equation. Following Jimbo and Miwa(36) we
can change to a new dependent variable

`=rF $�F (6.19)

which satisfies

r3(`$`$$$&`"2)&r2(``$$$&`$`")&r``"+``$+2r2`$3&6r``$2+4`2`$=0

(6.20)

This can be integrated once as

r2`"2+4`$2(r`$&`)&`$2

4(r`$&`)2 =+2 (6.21)

where + is a constant setting the scale. Hence, we arrive at the Painleve� V
equation(36, 38)

(r`")2=4+2(r`$&`)2&4`$2(r`$&`)+`$2 (6.22)

and its derivative

r2`$$$+r`"=4+2r(r`$&`)&4`$(r`$&`)+2r`$2+`$ (6.23)

Equations (6.18) and (6.20) are recovered again by eliminating +2 between
the last two equations. Comparing with the result for the uniform rec-
tangular case, (11, 38) we see that we must set +=1. Originally these scaling
functions F(r) and G(r) were given in terms of a Painleve� III formula-
tion, (11) but this has been shown to agree with the Painleve� V version.(38)

We conclude this section noting that we have found the scaled correla-
tion only for regimes I and II (k<1 or k>1). There is a third regime III
with k purely imaginary.(12, 13) For this case, we expect the scaled correla-
tion function to be given in terms of products of two Painleve� V functions,
as the correlation functions factorize.(37)

7. FERROMAGNETIC Z-INVARIANT FIBONACCI ISING
MODEL

In Section 5 we have studied Fibonacci Ising Models with interactions
that are attractive or repulsive according to Fibonacci rules. We shall now
consider Fibonacci Ising Models with purely ferromagnetic interactions.

If the Ising couplings are all ferromagnetic, then the connected two-
point correlation function remains strictly positive for all distances because
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of the second Griffiths inequality.(54�56) Therefore, the oscillations��if any��
are much smaller than in the mixed-sign case.

If the variation in the Ising couplings is small, the correlation function
is expected to decay monotonically. This can be seen as follows: In such a
ferromagnetic Fibonacci Ising model the pair interactions may take several
values and we denote the smallest one by Ks and the largest one by Kg . For
fixed distance, we can then use the Griffiths inequalities to show that the
correlation function of this ferromagnetic Fibonacci Ising lattice is larger
than that of the uniform ferromagnetic Ising lattice whose pair interaction
is equal Ks , and smaller than that of the uniform lattice with Kg . Since the
correlation functions of these two uniform ferromagnetic Ising models are
monotonically decreasing functions of distance, it is therefore unlikely that
the aperiodic lattice would behave much different from the regular Ising
lattice.

Indeed, in none of our numerical calculations on the Z-invariant
Fibonacci Ising Model did we encounter clearly visible multiple peaks in
/(q) as in Section 5. Instead, we only observed a single clear peak at q=0,
even though those computations were more involved, using the more
general quadratic relations (6.9) together with the determinant calculations
of diagonal and next-to-diagonal correlation functions mentioned in Sub-
section 4.1.

Rather than going through those calculations in further detail, we
shall first summarize our results for the one-dimensional case and then
argue that in the scaling limit, using the results of Section 6, /(q) has a
universal form for all ferromagnetic Z-invariant Fibonacci Ising Models.

7.1. One-Dimensional Example

It is by now well-known that for the general Ising chain in zero field
with interaction energy

E�kBT=&:
n

Kn_n_n+1 (7.1)

the pair correlation function is simply given by

(_m_n) = `
max(m, n)&1

l=min(m, n)

tanh Kl , |tanh Kl |#exp(&1�! l) (7.2)

with !l the correlation length for the uniform case with all couplings equal Kl .
Therefore, it takes only little effort to plot /(q) for the case that the [Kj ]
form a Fibonacci sequence of KA and KB , with the KA more abundant.
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As in Section 5, we can find the effective pair correlation using Tracy's
Lemma 2.5.(39) In the case that KA and KB are both ferromagnetic, we find

kBT/(q)=1+2 :
�

n=1

C (c)(n) cos(qn) (7.3)

with

C (c)(n)=C (c)(&n)=(1&[:n]) e&w:nx�!A e&(n&w:nx)�!B

+[:n] e&(w:nx+1)�!Ae&(n&w:nx&1)�!B, (n�0) (7.4)

Using the theory of Fourier series, we can then rewrite (7.4) as

C (c)(n)=(1+(e$&1)[:n]) e&$[:n]e&}n

= :
�

m=&�

sinh2 1
2 $

( 1
2 $+?im)2 e2?im:n&}n, (n�0) (7.5)

where

$=
1

!B

&
1

!A

, }=
:

!A

+
1&:

!B

(7.6)

When KA<0, we still have (7.3), but we have to replace 1�!A by 1�!A&?i
in (7.4) and (7.6), or $ has to be replaced by $+?i and } by }&?i:.

Since the effective correlation function (7.4) decays exponentially, it is
trivial to calculate the sum (7.3) numerically using software packages like
Maple. Therefore, without too many further details we shall present plots
for four cases in Fig. 12.

The first plot is for the uniform ferromagnetic case at three different
temperatures, with the highest and sharpest peak at q=0 for the lowest
temperature. The reduced wavevector-dependent susceptibility in this case
is given by

kBT/0(q)=
sinh !&1

cosh !&1&cos q
, !&1=&log tanh K (7.7)

The peaks get higher and narrower as the temperature goes down, while
the area under the curve remains constant, namely 2?.

The second plot is for the case that !A and !B have a ratio of 4:1. It
is hard to see any difference with the first plot; this is also true for the case
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Fig. 12. Reduced wavevector dependent susceptibility kBT/(q) for the one-dimensional Ising
chain. The four cases are: (a) the uniform ferromagnetic case; (b) the 4 :1 Fibonacci case;
(c) the 226 :1 Fibonacci case; and (d) the mixed-sign 1:1 Fibonacci case. See text.

with ratio 1:4, which is not shown. The third case has ratio 226 :1, very
close to the decoupling limit; even though there is a clear quantitative
difference, qualitatively it still looks like the uniform case. Indeed, in the
ferromagnetic Fibonacci case we have from (7.3) and (7.5) that

kBT/(q)= :
�

m=&�

sinh2 1
2$

( 1
2 $+?im)2

sinh(}&2?im:)
cosh(}&2?im:)&cos q

(7.8)

In the limit T � Tc=0, both $ and } tend to zero exponentially fast, and
it is not difficult to see that the m=0 term totally dominates (7.8), or
/(q)r/0(q) with !&1=}. This clear universal behavior, with only a single
delta-function divergence at q=0, holds as long as both KA and KB are
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positive. Similarly, when KA and KB are both negative there is only one
divergence at q=?, as /(q) then equals /(q\?) of the ferromagnetic case.

The final plot is for the mixed case with ferro- and antiferromagnetic
couplings of equal strength, which is the one-dimensional version of the
cases in Section 5. This last case is very different with clear incommensurate
peaks at the lowest temperature. In this mixed case, using the theory of
Section 5 or alternatively using (7.8) with $=?i, we have

/m(q)= :
�

m=&�

1
(m+ 1

2)2 ?2 /0(q+2?(m+ 1
2) :), := 1

2 (- 5&1)

(7.9)

indicating the locations and heights of the visible peaks. In fact, /0(q) is
periodic mod 2?, so that the peaks are located at q=2?(m+ 1

2) :+2?n,
with m and n arbitrary integers. The number of visible peaks increases as
the temperature decreases and the correlation length ! increases. It does
not matter that we have chosen the antiferromagnetic coupling to be the
more abundant one, as the other case follows from this one simply replacing
/(q) � /(q\?), corresponding to a flip of sign of every other spin.

It may be worthwhile to note that also in this mixed case we have
strong universality, with /(q)r/m(q) as T � 0. Now $ � ?i instead of 0,
causing all terms in (7.8) to contribute, rather than just the m=0 term.

7.2. Two-Dimensional Fibonacci Ising Model in the Scaling
Limit

We shall now study the simplest two-dimensional ferromagnetic case,
which is the Z-invariant Ising model with quasiperiodicity in one or two
diagonal directions.

This model is described in terms of two perpendicular sets of diagonal
rapidity lines, shown in Fig. 9. The rapidity variables [uj ] and [vj ] form
the Fibonacci sequences [uA , uB , uA , uA , uB ,...] and [vA , vB , vA , vA , vB ,...].
If vA=vB , the aperiodicity in the corresponding diagonal direction disap-
pears. As shown in Fig. 9, the rapidity lines define a checkerboard lattice
with alternatingly black and white faces, where the order variables (spins
_=\1) and disorder variables (dual spins +#_*) live. Two adjacent spins
share one vertex which is the intersection of two rapidity lines ui and vj .

The pair interaction energies between such pairs of spins are either Kij

shown in Fig. 10a, or K� ij shown in Fig. 10b. We have given a real elliptic
parametrization in (6.1). Two other parametrizations have been used by
Baxter(12, 13) and Mart@� nez.(18, 19) They are

sinh 2Kij=&ik sn(iui&ivj , k), sinh 2K� ij=i�sn(iui&ivj , k) (7.10)
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suitable for T>Tc (or k<1) and

sinh 2Kij=&i sn(iu$i&iv$j , 1�k), sinh 2K� ij=ik�sn(iu$i&iv$j , 1�k) (7.11)

more suited for T<Tc (or k>1). This last representation involves an
implicit rescaling of the rapidity variables by a factor k, u$i=kui , v$j=kvj ,
in view of Jacobi's real transformation k sn(x, k)=sn(kx, 1�k).

The pair correlation functions of the order and disorder variables have
been discussed in Section 6. Therefore, we can write

(_m, n _m$, n$) =g2m$&2m(k; um&n+1 ,..., um$&n$ , vm+n ,..., vm$+n$&1),
(7.12)

(_*m, n _*m$, n$) =g*2m$&2m(k; um&n+1 ,..., um$&n$ , vm+n+1 ,..., vm$+n$)

assuming m+n�m$+n$ and m&n�m$&n$, in which case all rapidity
lines pass between the spins (or dual spins) in the same direction. Clearly,
the same result holds if m+n�m$+n$ and m&n�m$&n$, interchanging
(m, n) with (m$, n$). On the other hand, if m+n�m$+n$ and m&n�
m$&n$, we have

(_m, n_m$, n$)=g2n$&2n(k; um$&n$+1 ,..., um&n , v� m+n ,..., v� m$+n$&1),
(7.13)

(_*m, n_*m$, n$)=g*2n$&2n(k; um$&n$+1 ,..., um&n , v� m+n+1 ,..., v� m$+n$)

where v� j=vj+K(k$). Finally, for m+n�m$+n$ and m&n�m$&n$, we
have to interchange (m, n) with (m$, n$) in (7.13). There exist several multi-
ple integral, determinant, and Pfaffian representations(12, 16�19) for these
functions g2m . In our study of the Fibonacci Ising model, it is not necessary
to use any of these results. We can use quadratic recurrence relations
instead as is explained in Section 6.

7.3. Effective Connected Pair Correlation Function in the
Scaling Limit

If we assume that the rapidity variables take at most four different
values u1 ,..., u4 and if we let Mj be the number of times that the value uj

occurs as argument of a given g2m function, then we can define the short-
hand notation

G(M1 , M2 , M3 , M4)= g (c)
2m(k; u1 ,..., u1

M1

, u2 ,..., u2

M2

, u3 ,..., u3

M3

, u4 ,..., u4

M4

) (7.14)

with M1+M2+M3+M4=2m. Next, if we write u1=uA , u2=uB , u3=vA ,
u4=vB for the Fibonacci Ising model of this section, then we can apply
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Lemma 2.5 in ref. 39 as we did in Section 5. This yields the effective connected
pair correlation function

C (c)(m, n)= lim
L � �

L&2 :
m$, n$

(_m$, n$_m$+m, n$+n) (c)

=(1&[(m+n) :])(1&[(m&n) :]) G(N1 , N2 , N3 , N4)

+(1&[(m+n) :])[(m&n) :] G(N1+1, N2&1, N3 , N4))

+[(m+n) :](1&[(m&n) :]) G(N1 , N2 , N3+1, N4&1)

+[(m+n) :][(m&n) :] G(N1+1, N2&1, N3+1, N4&1)

(7.15)

where

N1=m&n&N2=w(m&n) :x ,
(7.16)

N3=m+n&N4=w(m+n) :x

The Fourier transform of (7.15) gives the exact q-dependent susceptibility.
We have already seen that at temperatures for which the correlation

length is short, the q-dependent susceptibility of the aperiodic lattice does
not show much difference from that of the periodic lattice. We really need
only to examine the case that T is close to Tc . For the remainder of this
section we shall restrict ourselves to the scaling limit and use the results of
Section 6. From (6.7) and (6.8) we find

g (c)
2m(k; u1 ,..., u2m)r |1&k&2| 1�4 f\( |t| R) (7.17)

with t=1&k and with f+ and f& the connected versions of F and G. In
other words, f& for T<Tc includes a subtraction of the contribution due
to the square of the spontaneous magnetization. For correlation functions
of the form (7.14), (6.6) reduces to

4R2=(M1 cos 2u1+M2 cos 2u2+M3 cos 2u3+M4 cos 2u4)2

+(M1 sin 2u1+M2 sin 2u2+M3 sin 2u3+M4 sin 2u4)2 (7.18)

If the rapidity lines with rapidity variable uj pass between the two spins
in the opposite direction compared to a preferred direction, we have to
replace uj by uj\K(0)=u j\

1
2 ?, as explained in Section 6.1. Equivalently,

we can replace Mj>0 by &Mj<0. Because of this, R continues smoothly
across a boundary where Mj=0.
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The spin correlation function of the regular two-dimensional Ising
model has this scaling form with u1=u and u2=v, whereas u3 and u4 are
absent. More precisely, (7.17) reduces to

(_0, 0_m, n) (c)=G(m&n, m+n, 0, 0)r |1&k&2|1�4 f\( |t| R) (7.19)

with

R=- m2 cos2(u&v)+n2 sin2(u&v) (7.20)

Here one may have assumed that m+n, m&n�0. However, (7.20) is valid
generally for R large taking in account the remark below (7.18). Therefore,
the scaled correlation function is indeed rotationally invariant and, as
shown also in Section 6.3, it is given in terms of Painleve� equations.(11, 36, 38)

In order to compare with Vaidya's(35) work on the triangular Ising
model, we must study a quadratic Ising model with ``SW-NE'' diagonal
interactions. At criticality, the horizontal interactions K1 , the vertical inter-
actions K2 , and the diagonal interactions K3 are given by

sinh 2K1=tan(u1&u3), sinh 2K2=tan(u3&u2),
(7.21)

sinh 2K3=cot(u1&u2)

Here we have vertical rapidities u1 pointing north, horizontal rapidities u2

pointing east, and diagonal rapidities u3 pointing northeast. Each rapidity
line intersects each bonds it meets in the middle. Using (7.18), we find that
the scaled correlation function is given by

(_0, 0_m, n) (c)=G(m, &n, m&n, 0), for m�0 and n�0 (7.22)

Substituting Mi and ui into (7.18), rewriting u1=u, u2=v, u3=w, we find
that vector (m, n) corresponds to the scaled distance

R2=m2 cos(u&w)2+n2 cos(v&w)2

&2mn cos(u&w) cos(v&w) cos(u&v) (7.23)

Again, taking in account the remark below (7.18), (7.23) gives R also for
the regions with m<0 or n>0. This result for R is proportional to the one
of Vaidya(35) after some simplifications and after identifying N#m, M#n.
Equation (7.23) gives the most general positive definite quadratic form in
m and n. Therefore, the scaled correlation function of the most general peri-
odic Z-invariant Ising model cannot be distinguished from that of the tri-
angular lattice.
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7.4. Wavevector-Dependent Susceptibility of the Fibonacci
Ising Model in the Scaling Limit

The effective pair correlation of the Z-invariant Fibonacci Ising model
has been evaluated exactly in (7.15). We now use (7.17) with R given by
(7.18) to rewrite it in the scaling limit as

C (c)(m, n) |1&k&2|&1�4

r f\( |t| R1)+[(m&n) :][ f\( |t| R2)& f\( |t| R1)]

+[(m+n) :])[ f\( |t| R3)& f\( |t| R1)]

+[(m&n) :][(m+n) :][ f\( |t| R1)& f\( |t| R2)& f\( |t| R3)

+ f\( |t| R4)] (7.24)

where u1=uA , u2=uB , u3=vA , and u4=vB . The R j , for j=1, 2, 3, 4,
follow from (7.18) with the substitutions

R1 : (M1 , M2 , M3 , M4)=(N1 , N2 , N3 , N4)

R2 : (M1 , M2 , M3 , M4)=(N1+1, N2&1, N3 , N4)
(7.25)

R3 : (M1 , M2 , M3 , M4)=(N1 , N2 , N3+1, N4&1)

R4 : (M1 , M2 , M3 , M4)=(N1+1, N2&1, N3+1, N4&1)

in accordance with (7.15). Since w:(m\n)xr:(m\n) for m, n large, we
expand the Rj around R0 , which is given by

4R2
0=[(m&n)(: cos 2uA+(1&:) cos 2uB)

+(m+n)(: cos 2vA+(1&:) cos 2vB)]2

+[(m&n)(: sin 2uA+(1&:) sin 2uB)

+(m+n)(: sin 2vA+(1&:) sin 2vB)]2 (7.26)

which has the general quadratic form A(m&an)2+B(n+am)2 with A, B,
and a some constants, no more general than Vaidya's form(35) for the
triangular lattice (7.23).

It is straightforward to verify that

R1&R0+[(m&n) :](R2&R1)+[(m+n) :](R3&R1)=O(R&1
0 ),

(7.27)
Ri&R0=O(1), R1&R2&R3+R4=O(R&1

0 )
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when R0 � �. Also, we can Taylor expand

f\( |t| Ri )= f\( |t| R0)+|t| (R i&R0) f $\( |t| R0)+ } } } (7.28)

Therefore, in the scaling limit, we find that (7.24) becomes

C (c)(m, n)r |1&k&2| 1�4 f\( |t| R0) (7.29)

where the error is of the same order of magnitude as corrections to scaling.
In the scaling limit, we have to ignore those higher-order corrections and
substitute (7.29) into (5.6), converting the sum to an integral. It is easily
seen by comparing (7.29) with (7.20) that the only difference is the change
in R, which corresponds to a combination of a rotation and a scale trans-
formation. Hence, the scaled q-dependent susceptibility of the Z-invariant
ferromagnetic Fibonacci Ising model is the same as the one of a ferro-
magnetic Ising model on a triangular lattice. There is only one peak at
qx=qy=0 mod 2?, whose height is given by (5.15), except for a change in
the constant c\ . This is another manifestation of universality.

8. CONCLUSIONS

Even though several authors have shown that the quasi-periodic Ising
model is in the same universality class as the regular Ising model, with the
same critical exponents, its wavevector-dependent susceptibility can have
multiple incommensurate peaks. However, this only happens when the pair
interactions are both attractive and repulsive and the sign of the interac-
tions varies in an incommensurate way.

Indeed, for the mixed Fibonacci Ising model (with an incommensurate
sequence of ferro- and antiferromagnetic bonds), /(q) has infinitely many
divergencies at Tc , which are everywhere dense in the unit cell
0�qx , qy�2?. Away from Tc there is a finite number of incommensurate
peaks, and more and more of these peaks become invisible as T moves
farther away from Tc .

When all pair interactions are ferromagnetic, however, the q-dependent
susceptibility behaves just like the one in the regular ferromagnetic Ising
model, with only one diverging peak per unit cell located at (qx , qy)=
(0, 0), in spite of aperiodicity present in the lattice. This is explained by the
fact that the spin correlation function in a ferromagnetic Ising Fibonacci
lattice decays as a function of distance without changing sign. We have
shown this in two examples, the one-dimensional case (Tc=0) in Section 7.1
and the scaling limit of the Z-invariant Ising model in Section 7.4.
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In other words, when there are no oscillations in the pair correlation,
then there is no trace of the multi-peaks in the q-dependent susceptibility.
This is a confirmation of work by Nelson and Widom, that the interference
pattern in the icosahedral alloy is a result of the many oscillations in the
radial pair correlation functions.(57�59)

Not only does the wavevector-dependent susceptibility /(q) have but
one pronounced peak at q=(0, 0), leading to a single T=0 divergence, if
all the interactions are ferromagnetic; also if the interactions on the qua-
dratic lattice are purely antiferromagnetic we expect only one such peak at
q=(?, ?), even if the magnitudes of the interactions vary quasiperiodically.

For the other cases that we considered, with aperiodic mixed signs of
the bonds, the pair correlations as seen from (5.8), (5.22)�(5.26) pick up
oscillating phase factors. These factors are present for both T>Tc and
T<Tc . Thus it follows that the everywhere dense set of overlapping peaks
is a result of aperiodic oscillations of the pair correlations; whether the
system is ordered or disordered is not relevant. The difference in the number
of peaks at different temperatures shows that the number of oscillations per
correlation length in the pair correlation function determines the number of
visible peaks.

If��instead of aperiodic oscillations��the pair correlation picks up a
periodic phase factor, then the diffraction patterns as well as the q-dependent
susceptibilities in the two cases differ in two ways. As the correlation length
increases, the peaks move and approach their different sets of positions for
the two cases, one commensurate and the other incommensurate. Moreover,
as ! � � there is an ever-increasing number of peaks for the aperiodic
case, while the number of peaks for the periodic case has an upper bound.

Finally, in our present paper we have chosen the underlying lattice to be
regular. With our increased knowledge of the correlation functions we should
be able to repeat the calculations for certain aperiodic lattices(22�29, 60, 61)

like Penrose tilings. We hope to come back to this in a future publication.
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